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[.. FIG. 4. Calculated and measured emission peak intensity
versus pressure for ZnS:Cu:Cl.
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FIG. 2. Emission peak shift versus pressure for ZnSe:Cu: Cl.

beled “Theory” are discussed in the latter part of the
paper. The rate of decrease in intensity depends on the
coactivator, particularly for the series of coactivators
Al**, In*, Ga® as illustrated in Fig. 6.
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FIG. 3. Relative emission intensity and observed lifetime
versus pressure for ZnS:Cu:Al.

ture at different pressures for several compounds. The
results are illustrated in Figs. 7 and 8 for ZnS : Ag: Cl
and ZnSe :Cu:Cl, respectively. The effect of pressure
on the temperature coefficient is small, a fact which en-
ters into our discussion below.

Lifetimes

The intensity was measured as a function of time at
different pressures for four ZnS phosphors. The time
dependence is complex. The curves (except for
ZnS : Cu: In) were fit with two exponentials. The life-
times 7, and 7, are listed in Table II. The use of two
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FIG. 5. Relative emission intensity versus pressure for
ZnSe : Cu:Cl.
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FIG. 6. Relative emission intensity versus pressure for a
Cu*-doped ZnS with different coactivators.

exponentials is regarded as a convenient approximate
way of describing the data. No doubt the actual process
is more complex.™!® For ZnS:Cu: Al both 7, and 7,
were independent of pressure (see also Fig. 3). For
the other materials there was a distinct decrease in
both time constants with increasing pressure. The anal-
ysis we use below implies that the lifetime should not

be pressure dependent, so it is a better approximation
for ZnS :Cu: Al than for the other systems, although it
would appear to describe their behavior satisfactorily

also.

DISCUSSION

The quantitative expressions of interest are those re-
lating the observed energy of the emitted light and the
intensity of that light to experimentally accessible quanti-
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FIG. 7. Intensity versus temperature for two pressures for
ZnS :Ag: Cl,

emitted light?
ez
E(r)=hv=E,m—(EA+ED)+; (2)
and for the total intensity
1
I(r)e = I W) Glor) Fr)dr , (3)

where W(r), the radiative recombination rate, is given
by

W(r) = constx (r/a* > exp(- 2v/Na*) . ()
Here
E*\!/2 e e
—- r— *: -
Rali ) Bt e , =

m* is the effective electronic mass and ¢ is the dielec-
tric constant.

The form of the transition probability [Eq. (4)] by
Thomas et al.'® becomes a poorer approximation at
larger E,. If one considers pairs at large » (e.g.,
emitting pairs separated by 20 A or more), use of Eq.
(2) is straightforward since the Coulomb term may be
neglected. Equation (4) predicts that as the shallower
level becomes more localized pairs at small » will con-
tribute mainly to the emission band, and hence the pair
interaction term will have more influence on the peak en-
ergy of the band. The measured emission data are in
the form of a band made up of transitions from the
closest emitting pair to pairs which have large separa-
tions. It is uncertain as to what distance represents that
of the closest emitting pair or if this distance is the
same for different impurities. The distance is essen-
tially an adjustable parameter representing the lower
limit in Eq. (3). In the absence of this information
estimation of the pressure dependence of E, will be
simplified by using » -~ in Eq. (2); at higher pressures
where closer pairs are responsible for most of the ob-
served emission this simplification may be less ap-
propriate.

To make use of Eq. (3) a distribution furiction must be
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