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FIG. 2. Emission peak shift versus pressure for ZnSe: Cu: Cl. 

beled "Theory" are discussed in the latter part of the 
paper. The rate of decrease in intensity depends on the 
coactivator, particularly for the series of coactivators 
Als+, Ins+, Gas+ as illustrated in Fig. 6. 
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FIG. 3. Relativ.e emission intensity and observed lifetime 
versus pressure for ZnS : Cu : AI. 
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FIG. 4. Calculated and measured emission peak intensity 
versus pressure for ZnS : Cu : CI. 

Intensities were measured as a function of tempera­
ture at different pressures for several compounds. The 
results are illustrated in Figs. 7 and 8 for ZnS : Ag: Cl 
and ZnSe : Cu : Cl, respectively. The effect of pressure 
on the temperature coefficient is small, a fact which en­
ters into our discussion below. 

Lifetimes 

The intensity was measured as a function of time at 
different pressures for four ZnS phosphors. The time 
dependence is complex. The curves (except for 
znS : Cu : In) were fit with two exponentials. The life­
times Tl and Tz are listed in Table II. The use of two 
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FIG. 5. Relative emission intensity versus pressure for 
ZnSe : Cu : Cl. 
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FIG. 6. Relative emission intensity versus pressure for a 
Cu·-doped znS with different coactivators. 

exponentials is regarded as a convenient approximate 
way of describing the data. No doubt the actual proces·s 
is more complex. 17,18 For znS : Cu: Al both 71 and 72 

were independent of pressure (see also Fig. 3). For 
the other materials there was a distinct decrease in 
both time constants with increasing pressure. The anal­
ysis we use below implies that the lifetime should not 
be pressure dependent, so it is a better approximation 
for ZnS : Cu : Al than for the other systems, although it 
would appear to describe their behavior satisfactorily 
also. 

DISCUSSION 

The quantitative expressions of interest are those re­
lating the observed energy of the emitted light and the 
intensity of that light to experimentally accessible quanti-
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FIG. 7. Intensity versus temperature for two pressures for 
ZnS :Ag: Cl. 
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FIG. 8. Intensity versus temperature at two pressures for 
ZnSe : Cu : Cl. 

ties. These expressions are for the energy of the 
emitted light2 

and for the total intensity 

l(r) 0: ~ f r2w(r)G~)F(r)dr. , 

(2) 

(3) 

where W(r), the radiative recombination rate, is given 
by 

W(r) = const.x(r/a*)2(N-1) exp(- 2r/Na*) . 

Here 

N=(EED*)1/2, E* = ~ 
2a*€ ' 

(4) 

m* is the effective electronic mass and € is the dielec­
tric constant. 

The form of the transition probability [Eq. (4)] by 
Thomas et al. 19 becomes a poorer approximation at 
larger ED. If one considers pairs at large r (e. g. , 
emitting pairs separated by 20 A or more), use of Eq. 
(2) is straightforward since the Coulomb term may be 
neglected. Equation (4) predicts that as the shallower 
level becomes more localized pairs at small r will con­
tribute mainly to the emission band, and hence the pair 
interaction term will have more influence on the peak en­
ergy of the band. The measured emission data are in 
the form of a band made up of transitions from the . 
closest emitting pair to pairs which have large separa­
tions. It is uncertain as to what dis~ance represents that 
of the closest emitting pair or if this distance is the 
same for different impurities. The distance is essen­
tially an adjustable parameter representing the lower 
limit in Eq. (3). In the absence of this information 
estimation of the pressure dependence of ED will be 
simplified by using r - 00 in Eq. (2); at higher pressures 
where closer pairs are responsible for most of the ob­
served emission this simplification may be less ap­
propriate. 

To make use of Eq. (3) a distribution function must be 
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